

HDMI Companion Chip with I²C Level Shifting Buffer, 12 Channel ESD, and Current-Limit Load Switch

Check for Samples: TPD12S016

FEATURES

- Confirms to HDMI Compliance Tests without any External Components
- Supports HDMI1.4 Data Rate
- Match Class D and Class C Pin Mapping
- 8-Channel ESD Lines for Four Differential Pairs with Ultra-low Differential Capacitance Matching (0.05pF)
- On-chip Load Switch with 55mA Current Limit Feature at the HDMI 5V_OUT Pin
- Auto-direction Sensing I²C Level Shifter with One-shot Circuit to Drive Long HDMI Cable (750pF Load)
- Back-drive Protection on HDMI Connector Side Ports

- Integrated Pull-up and Pull-down Resistors per HDMI Specification
- ±8KV Contact Discharge Rating at all External Pins
- Space Saving 24-pin RKT Package and 24-TSSOP Package

APPLICATIONS

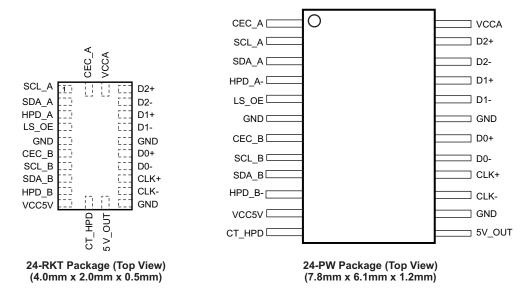
- Cell Phones
- eBook
- Portable Media Players
- Set-top Box

DESCRIPTION

The TPD12S016 is a single-chip HDMI interface device with auto-direction sensing I2C voltage level shift buffers, load switch, and integrated high-speed ESD protection clamps. The device pin mapping matches the HDMI Type D connector with four differential pairs. This device offers eight low-capacitance ESD clamps, allowing HDMI 1.4 data rates. The integrated ESD circuits provide good matching between each differential signal pair, which allows an advantage over discrete ESD solutions where variations between ESD protection clamps degrade the differential signal quality. The TPD12S016 provides a current limited 5 V output (5V_OUT) for sourcing the HDMI power line. The current limited 5 V output supplies up to 55 mA to the HDMI receiver. The control of 5V_OUT and the hot plug detect (HPD) circuitry is independent of the LS_OE control signal, and is controlled by the CT_HPD pin. This independent CT_HPD control enables the detection scheme (5V_OUT and HPD) to be active before enabling the HDMI link. An internal 3.3V node powers the CEC pin eliminating the need for a 3.3V supply on board.

The TPD12S016 integrates all the external termination resistors at the HPD, CEC, SCL, and SDA lines. There are three non-inverting bi-directional translation circuits for the SDA, SCL, and CEC lines. Each have a common power rail (VCCA) on the A side from 1.1 V to 3.6V. On the B side, the SCL_B and SDA_B each have an internal 1.75 k Ω pull up connected to the 5 V rail (5V_OUT). The SCL and SDA pins meet the I2C specification and drive up to 750 pF capacitive loads exceeding the HDMI1.4 specifications. The CEC_B pin has an internal 27 k Ω pull up to the internal 3.3 V supply rail. The HPD_B port has a glitch filter to avoid false detection due to plug bouncing during the HDMI connector insertion.

The TPD12S016 offers reverse current block feature at the 5V_OUT pin. In the fault conditions, such as when two HDMI transmitters connect to the same HDMI cable, the TPD12S016 ensures that the system is safe from powering up through external HDMI transmitter. The Dx, CLKx, SCL_B, SDA_B, CEC_B pins also feature reverse-current blocking when the system is powered off.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

PACKAGE INFORMATION

APPLICATION INFORMATION

Application Case #1: HDMI Driver Chip is controlling the TPD12S016 via only one control line (CT_HPD). In this mode the HPD_A to LE_OE pin are connected as shown in the oval dotted line of Figure 1.

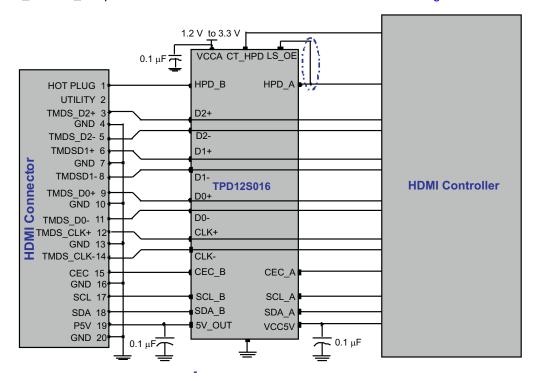


Figure 1. Application Schematics for HDMI Controllers with One GPIO for HDMI Interface Control

Submit Documentation Feedback

Application Case #2: Some HDMI driver chips may have two GPIOs to control the HDMI interface chip. In this case a flexible power saving mode can be implemented.

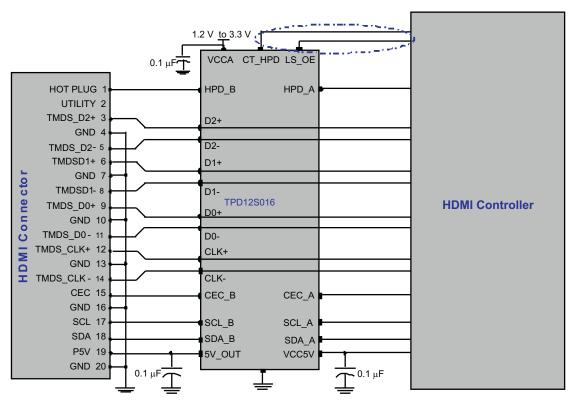


Figure 2. Application Schematics for HDMI Controllers with Two GPIOs for HDMI Interface Control

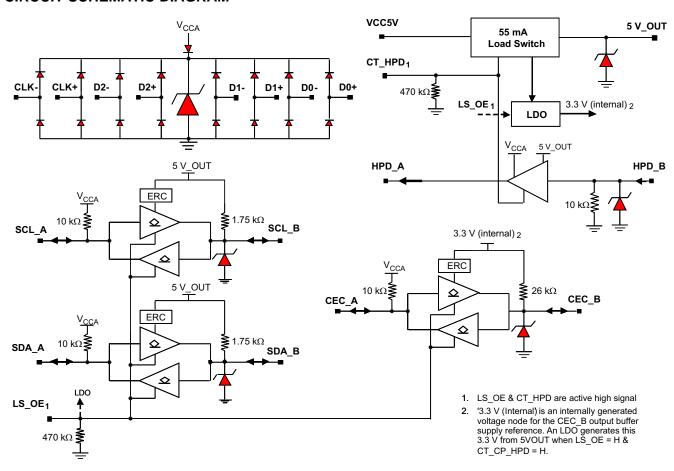
The LS_OE and CT_HPD are active-high enable pins. They control the TPD12S016 power saving options according to the following table:

LS_OE	CT_HPD	VCCA	5V_OU T	A-side Pull-ups	DDC, B- Side Pull-ups	CEC_B Pull-ups	CEC LDO	Load SW and HPD	DDC/ CEC VLTs	ICCA Typ	ICC5V Typ	Comments
L	Г	1.8V	5.0V	Off	Off	Off	Off	Off	Off	1µA	1 μΑ	Fully Disabled
L	Н	1.8V	5.0V	On	On	Off	Off	On	Off	1 µA	30 μΑ	Load Switch on
Н	L	1.8V	5.0V	Off	Off	Off	Off	Off	Off	1 μΑ	1 μΑ	Not Valid State
Н	Н	1.8V	5.0V	On	On	On	On	On	On	13 µA	200 μΑ	Fully On
Х	Х	0V	0V	High-Z	High-Z	High-Z	Off	Off	Off	0	0	Power Down
X	Х	1.8V	0V	High-Z	High-Z	High-Z	Off	Off	Off	0	0	Power Down
X	Х	0V	5.0V	High-Z	High-Z	High-Z	Off	Off	Off	0	0	Power Down

ORDERING INFORMATION

T _A	T _A PACKAGE ⁽¹⁾⁽²⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	QFN -0.4-mm pitch (4.0mm x 2.0mm x 0.5mm)	Tape and reel	TPD12S016RKTR	PN016
	TSSOP –0.65-mm pitch (7.8mm x 6.4mm x 1.2mm)	Tape and reel	TPD12S016PWR	PN016

⁽¹⁾ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.


Copyright © 2011–2012, Texas Instruments Incorporated

Submit Documentation Feedback

⁽²⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI Web site at www.ti.com.

CIRCUIT SCHEMATIC DIAGRAM

PIN FUNCTIONS

				FINALONCTIONS
	PIN		PIN TYPE	DESCRIPTION
NAME	RKT	PW	1114 111 2	DESCRIPTION
D-, D+	16, 17, 19- 22	17, 18, 20-23	ESD Terminal	HDMI TMDS Data. Connect to HDMI Controller and HDMI Connector directly.
CLK+, CLK-	14, 15	15, 16	ESD Terminal	HDMI TMDS Clock. Connect to HDMI Controller and HDMI Connector directly.
HPD_A	3	4	Output	Hot plug detect Output referenced to VCCA. Connect to HDMI controller Hot plug detect input pin
HPD_B	9	10	Input	Hot plug detect Input. Connect directly to HDMI Connector Hot Plug Detect pin
CEC_A	24	1	IO Port	HDMI controller side CEC signal pin referenced to VCCA. Connect to HDMI controller.
CEC_B	6	7	IO Port	HDMI connector side CEC signal pin referenced to internal 3.3V supply. Connect to HDMI connector CEC pin.
SCL_A	1	2	IO Port	HDMI controller side SCL signal pin referenced to VCCA. Connect to HDMI controller.
SCL_B	7	8	IO Port	HDMI connector side SCL signal pin referenced to 5V_OUT supply. Connect to HDMI connector SCL pin.
SDA_A	2	3	IO Port	HDMI controller side SDA signal pin referenced to VCCA. Connect to HDMI controller.
SDA_B	8	9	IO Port	HDMI connector side SDA signal pin referenced to 5V_OUT supply. Connect to HDMI connector SDA pin.
LS_OE	4	5	Control Input	Disables the Level shifters when OE =L. The OE pin is referenced to VCCA
CT_HPD	11	12	Control Input	Disables the load switch and HPD_B when CT_HPD =L. The CT_HPD is referenced to VCCA
VCC5V	10	11	Input Power	Internal 5V Supply. (Input to the load siwtch.)
VCCA	23	24	Input Power	Internal PCB Low Voltage Supply (Same as the HDMI Controller Chip Supply)
5V_OUT	12	13	Output Power	External 5V Supply. (Output of the load switch.)
GND	5, 13, 18	6, 14, 19	Ground	Connect to System Ground Plane

Submit Documentation Feedback

Copyright © 2011–2012, Texas Instruments Incorporated

ABSOLUTE MAXIMUM RATINGS(1)(2)

over operating free-air temperature range (unless otherwise noted)

			VA	LUE	
			MIN	MAX	UNIT
V_{CCA}	Supply voltage range		-0.3	4.0	V
V _{CC5V}	Supply voltage range		-0.3	6.0	V
		SCL_A, SDA_A, CEC_A	-0.3	4.0	
.,	land valtage as as (2)	SCL_B, SDA_B, CEC_B	-0.3	6.0	V
V _I	Input voltage range ⁽²⁾	CT_HPD, LS_OE	-0.3	4.0	
		D, CLK	-0.3	6.0	
.,	Voltage range applied to any output in	SCL_A, SDA_A, CEC_A, CT_HPD, LS_OE	-0.3	4.0	V
Vo	the high-impedance or power-off state (2)	SCL_B, SDA_B, CEC_B	-0.3	6.0	V
	Voltage range applied to any output in	SCL_A, SDA_A, CEC_A, CT_HPD, LS_OE	-0.3	VCCA + 0.5	
Vo	the high or low state (2)(3)	SCL_B, SDA_B, CEC_B	-0.3	VCCB + 0.5	V
I _{IK}	Input clamp current	VI < 0	-50		mA
lok	Output clamp current	VO < 0		-50	mA
	Continuous current through $V_{\rm CCB}$, or GND			±100	mA
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

RECOMMENDED OPERATING CONDITIONS

over recommended operating free-air temperature range (unless otherwise noted)

				MIN	MIN TYP MAX		
V _{CCA}	Supply voltage			1.1	3.6	V	
V _{CC5V}	Supply voltage			4.5	5.5	V	
		SCL_A, SDA_A	VCCA =1.1V to 3.6 V	0.7×V _{CCA}	V_{CCA}	V	
		CEC_A	VCCA =1.1V to 3.6 V	0.7×V _{CCA}	V_{CCA}	V	
V	High-level input voltage	CTHPD, LS_OE	VCCA =1.1V to 3.6 V	1.0	V_{CCA}	V	
VIH	r light-level input voltage	SCL_B, SDA_B	5V_OUT = 5.0 V	0.7x5V_OUT	5V_OUT	V	
		CEC_B	5V_OUT = 5.0 V	0.7xV _{3P3} ⁽¹⁾	V_{3P3}		
		HPD_B	5V_OUT = 5.0 V	2.0	5V_OUT		
		SCL_A, SDA_A	VCCA =1.1V to 3.6 V	-0.5	0.082×V _{CCA}	V	
		CEC_A	VCCA =1.1V to 3.6 V	-0.5	0.082×V _{CCA}	V	
.,	Laurianal Saarat valtaaa	CT_HPD, LS_OE	VCCA =1.1V to 3.6 V	-0.5	0.4	V	
V _{IL}	Low-level input voltage	SCL_B, SDA_B	5V_OUT = 5.0 V	-0.5	0.3×5V_OUT	V	
		CEC_B	5V_OUT = 5.0 V	-0.5	0.3×V _{3P3}	V	
		HPD_B	5V_OUT = 5.0 V	0	0.8	V	
V _{ILC}	(contention) Low-level input voltage	SCL_A, SDA_A, CEC_A	VCCA =1.1V to 3.6 V	-0.5	0.065×V _{CCA}	V	
V _{OL} - V _{ILC}	Delta between V_{OL} and V_{ILC}	SCL_A, SDA_A, CEC_A	VCCA =1.1V to 3.6 V		0.1×V _{CCA}	mV	
T _A	Operating free-air tempera	ture		-40 85		°C	

⁽¹⁾ The V3P3 is an internal 3.3V power supply node. The V3P3 is generated from the 5V supply pin through the on-chip LDO.

⁽²⁾ The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

⁽³⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

ESD TABLE

PARAMETER	SIGNALS	TYP	UNIT
HBM ESD	LS_OE, CT_HPD, SCL_A, SDA_A, CEC_A, HPD_A, VCCA	±2	kV
HBIVI ESD	Dx, CLKx, SCL_B, SDA_B, CEC_B, HPD_B , 5V_OUT	±15	kV
IEC 61000-4-2 Contact Discharge	Dx, CLKx, SCL_B, SDA_B, CEC_B, HPD_B , 5V_OUT	±8	kV

ELECTRICAL CHARACTERISTICS

High Speed ESD Lines: Dx, CLKx

	PARAME	TER	TEST CONDI	TION	MIN	TYP	MAX	UNIT	
I _{IO}	Current through ESD	clamp ports	V _{CCA} = 3.3 V, VCC5V = 5.0 V, V _{IO} = 3.3 V	D, CLK		0.01	0.5	μΑ	
V_{DL}	Diode forward voltag	е	I _D = 8 mA	Lower clamp diode		0.8	1.0	V	
R _{DYN}	Dynamic Resistance		I = 1 A	D, CLK		1		Ω	
0	10	PW Package	., .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	D 01.14	1.0				
C _{IO}	IO capacitance	RKT Package	$V_{CC} = 5 \text{ V}, V_{IO} = 2.5 \text{ V}$	D, CLK		1.2		pF	
ΔC_{IO_TMDS}	Differential capacitar	nce for the Dx+, Dx- lines	$V_{CC} = 5 \text{ V}, V_{IO} = 2.5 \text{ V}$	D, CLK		0.05		pF	
V_{BR}	Break-down Voltage		I _{IO} = 1 mA		6.5		9	V	

Load Switch VCC5V, 5V_OUT

	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
I _{CC5V}	Supply current at VCC5V	VCC5V =5V, 5V OUT =Open, LS_OE = GND, CT_HPD = GND		1	45	μΑ
	Supply current at VCC5V	VCC5V =5V, 5V OUT =Open, LS_OE = GND, CT_HPD = 3.3V		4	50	μΑ
I _{SC}	Short circuit current at 5V_OUT	VCC5V =5V, 5V_OUT = GND		150	200	mA
V_{DROP}	5V_OUT output voltage drop	VCC5V =5V, I _{5V_OUT} = 55 mA		35	50	mV
T _{ON}	Turn on Time, VCC5V to 5V_OUT	$C_{LOAD} = 0.1 \mu F$, $R_{LOAD} = 500 \Omega$		77		μs
T _{OFF}	Turn off Time, VCC5V to 5V_OUT	$C_{LOAD} = 0.1 \mu F$, $R_{LOAD} = 500 \Omega$		7.0		μs
T _{SHUT}	The arrest Chartelesses	Shutdown threshold, TRIP ⁽¹⁾		140		ڻ ت
	Thermal Shutdown	HYST ⁽²⁾		12		-0

⁽¹⁾ The TPD12S016 turns off after the device temperature reaches the TRIP temperature.

Voltage Level Shifter – SCL, SDA Lines (x_A and x_B Ports)

	DADAMETED		TOT CONDITIONS	V	-40°C	3	UNIT	
	PARAMETER	11	EST CONDITIONS	V _{CCA}	MIN	TYP	MAX	UNII
V _{OHA}		I _{OH} = -20 μA	$V_I = V_{IH}$	1.1 V to 3.6 V	V _{CCA} ×0.80			٧
V _{OLA}		I _{OL} = 20 μA	$V_I = V_{IL}$	1.1 V to 3.6 V		V _{CCA} ×0.17		V
V _{OHB}		I _{OH} = -20 μA	$V_I = V_{IH}$		5VOUT ×0.90			٧
V_{OLB} $I_{OL} = 3 \text{ mA}$ $V_{I} = V_{IL}$		$V_{I} = V_{IL}$				0.4	V	
ΔV_T	Hysteresis at the SDx_A ($V_{T+} - V_{T-}$)			1.1 V to 3.6 V		40		mV
ΔV_{T}	Hysteresis at the SDx_B ($V_{T+} - V_{T-}$)			1.1 V to 3.6 V		400		mV
Б	(lateral rull un)	SCL_A, SDA_A	Pull-up connected to VCCA rail			10		kΩ
R _{PU}	(Internal pull-up)	SCL_B, SDA_B	Pull-up connected to 5 V rail			1.75		
I _{PULLUP} AC	Transient boosted pull-up current (rise-time accelerator)	SCL_B, SDA_B	Pull-up connected to 5 V rail			15		mA
	A port	VCCA = 0 V, \	$V_{\rm I}$ or $V_{\rm O} = 0$ to 3.6 V	0 V			±5	
I _{off}	B port	5VOUT = 0 V,	V_I or $V_O = 0$ to 5.5 V	0 V to 3.6 V			±5	μA
	B port	V _O = V _{CCO} or GND		1.1 V to 3.6 V			±5	
l _{OZ}	A port	V _I = V _{CCI} or GND		1.1 V to 3.6 V			±5	μA

⁽²⁾ Once the thermal shut-down circuit turns off the load switch, the switch turns on again after the device junction temperature cools down to a temperature equals to or less than TRIP-HYST.

Voltage Level Shifter – CEC Line (x_A and x_B ports)

	DADAMETED		CT CONDITIONS	V	-40°C to 85°C			LINIT
	PARAMETER	I E	ST CONDITIONS	V _{CCA}	MIN	TYP	MAX	UNIT
V _{OHA}		I _{OH} = -20 μA	$V_I = V_{IH}$	1.1 V to 3.6 V	V _{CCA} ×0.80			V
V _{OLA}		I _{OL} = 20 μA	$V_I = V_{IL}$	1.1 V to 3.6 V		V _{CCA} ×0.17		V
V_{OHB}		$I_{OH} = -20 \mu A$	$V_I = V_{IH}$		V _{3P3} × 0.80			٧
V_{OLB}		$I_{OL} = 3 \text{ mA}$	$V_I = V_{IL}$				0.4	V
ΔV_{T}	Hysteresis at the Sxx_A ($V_{T+} - V_{T-}$)			1.1 V to 3.6 V		40		mV
ΔV_{T}	Hysteresis at the Sxx_B ($V_{T+} - V_{T-}$)			1.1 V to 3.6 V		300		mV
Б	(lateral and mail and	CEC_A	Pull-up connected to VCCA rail			10		kΩ
R _{PU}	(Internal pull-up)	CEC_B	Pull-up connected to 3.3 V rail		22	26	30	
	A port	VCCA = 0 V, V	V_1 or $V_0 = 0$ to 3.6 V	0 V			±5	
l _{off}	B port	5VOUT = 0 V,	V_1 or $V_0 = 0$ to 5.5 V	0 V to 3.6 V			±1.8	μΑ
	B port	$V_O = V_{CCO}$ or C	GND	1.1 V to 3.6 V			±5	
l _{OZ}	A port	V _I = V _{CCI} or GN	V _I = V _{CCI} or GND				±5	μA

Voltage Level Shifter – HPD Line (x_A and x_B ports)

	PARAMETER		TOT CONDITIONS	V	-40°C	;	LINUT	
	PARAMETER	11	EST CONDITIONS	V _{CCA}	MIN	TYP	MAX	UNIT
V _{OHA}		$I_{OH} = -3 \text{ mA}$	$V_{I} = V_{IH}$	1.1 V to 3.6 V	V _{CCA} ×0.07			V
V _{OLA}		I _{OL} = 3 mA	$V_I = V_{IL}$	1.1 V to 3.6 V			0.4	٧
ΔV_{T}	Hysteresis (V _{T+} – V _{T-})			1.1 V to 3.6 V		400		mV
R _{PD}	(Internal pull-down resistor)	HPD_B	Pull-down connected to GND			11		kΩ
I _{off}	A port	$V_O = V_{CCO}$ or GND		0 V			±5	μΑ
I_{OZ}	A port	V _I = V _{CCO} or GND		3.6 V			±5	μΑ

LS_OE, CT_CP_HPD

PARAMETER	TEST CONDITIONS	V	-40°0	С	UNIT		
PARAMETER	TEST CONDITIONS	V _{CCA}	MIN	TYP	MAX	UNIT	
l _l	$V_{I} = V_{CCA}$ or GND	1.1 V to 3.6 V			±12	μΑ	

I/O Capacitances

	PARAMETER	TEST CONDITIONS	V	-40°C to 85°C	UNIT
	PARAWETER		V _{CCA}	MIN TYP MA	
C_{l}	Control inputs	V _I = 1.89 V or GND	1.1 V to 3.6 V	7.1	pF
_	A port	V _O = 1.89 V or GND	1.1 V to 3.6 V	8.3	pF
C _{io}	B port	$V_O = 5.0 \text{ V or GND}$	5.0 V	15	pF

Submit Documentation Feedback

Copyright © 2011–2012, Texas Instruments Incorporated

SWITCHING CHARACTERISTICS

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
•	Bus Load Capacitance (B Side)				750	"F
CL	Bus Load Capacitance (A Side)				15	pF

Voltage Level Shifter – SCL, SDA Lines (x_A and x_B ports) VCCA = 1.2 V

	PARAMETER	PINS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Dropogation delay	A to B	SCL/SDA Channels Enabled		310		nS
t _{PHL}	Propagation delay	B to A	SCL/SDA Channels Enabled		420		113
	Propagation delay	A to B	SCL/SDA Channels Enabled		510		nS
t _{PLH}		B to A	SCL/SDA Channels Enabled		427		
	A Port fall time	A-Port	SCL/SDA Channels Enabled		334		nS
t _{FALL}	B Port fall time	B-Port	SCL/SDA Channels Enabled		225		113
	A Port rise time	A-Port	SCL/SDA Channels Enabled		315		nS
t _{RISE}	B Port rise time	B-Port	SCL/SDA Channels Enabled		415		113
F _(MAX)	Maximum switching frequency		SCL/SDA Channels Enabled	400			kHz

Voltage Level Shifter – CEC Lines (x_A and x_B ports) VCCA = 1.2 V

	5.13. 5.1. 5.1. 5.1. 5.1. 5.1. 5.1. 5.1.											
	PARAMETER	PINS	TEST CONDITIONS	MIN T	YP MAX	UNIT						
	Dropogation dolov	A to B	CEC Channel Enabled	;	385	nS						
t _{PHL}	Propagation delay	B to A	CEC Channel Enabled		526	113						
	Propagation delay	A to B	CEC Channel Enabled	1	3.8	μS						
t _{PLH}		B to A	CEC Channel Enabled	1	6.6	nS						
	A Port fall time	A-Port	CEC Channel Enabled	;	334	-0						
t _{FALL}	B Port fall time	B-Port	CEC Channel Enabled		170	nS						
	A Port rise time	A-Port	CEC Channel Enabled	;	315	nS						
t _{RISE}	B Port rise time	B-Port	CEC Channel Enabled		28	μS						

Voltage Level Shifter – HPD Lines (x_A and x_B ports) VCCA = 1.2 V

	PARAMETER	PINS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PHL}	Propagation delay	B to A	HPD Channel Enabled		14.4		μS
t _{PLH}	Propagation delay	B to A	HPD Channel Enabled		9.2		μS
t _{FALL}	A Port fall time	A-Port	HPD Channel Enabled		2.1		nS
t _{RISE}	A Port rise time	A-Port	HPD Channel Enabled		2.1		nS

Voltage Level Shifter – SCL, SDA Lines (x_A and x_B ports) VCCA = 1.5 V

	PARAMETER	PINS	TEST CONDITIONS	MIN .	TYP MAX	UNIT
	Dranagation daloy	A to B	SCL/SDA Channels Enabled		310	nS
t _{PHL}	Propagation delay	B to A	SCL/SDA Channels Enabled		420	nS
	Propagation delay	A to B	SCL/SDA Channels Enabled		410	nS
t _{PLH}		B to A	SCL/SDA Channels Enabled		425	nS
	A Port fall time	A-Port	SCL/SDA Channels Enabled		250	nS
t _{FALL}	B Port fall time	B-Port	SCL/SDA Channels Enabled		225	nS
	A Port rise time	A-Port	SCL/SDA Channels Enabled		315	nS
t _{RISE}	B Port fall time	B-Port	SCL/SDA Channels Enabled		415	nS
F _(MAX)	Maximum switching frequency		SCL/SDA Channels Enabled	400	·	kHz

Copyright © 2011–2012, Texas Instruments Incorporated

Submit Documentation Feedback

Voltage Level Shifter – CEC Lines (x_A and x_B ports) VCCA = 1.5 V

	PARAMETER	PINS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Dropogation doloy	A to B	CEC Channel Enabled		380		nS
t _{PHL}	Propagation delay	B to A	CEC Channel Enabled		420		113
t	Dranagation daloy	A to B	CEC Channel Enabled	13.8 µ	μS		
t _{PLH}	Propagation delay	B to A	CEC Channel Enabled		16.6		nS
	A Port fall time	A-Port	CEC Channel Enabled		250		nS
t _{FALL}	B Port fall time	B-Port	CEC Channel Enabled		170		110
	A Port rise time	A-Port	CEC Channel Enabled		315		nS
t _{RISE}	B Port rise time	B-Port	CEC Channel Enabled		28		μS

Voltage Level Shifter – HPD Lines (x_A and x_B ports) VCCA = 1.5 V

	PARAMETER	PINS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PHL}	Propagation delay	B to A	HPD Channel Enabled		14.4		μS
t _{PLH}	Propagation delay	B to A	HPD Channel Enabled		9.2		μS
t _{FALL}	A Port fall time	A-Port	HPD Channel Enabled		1.8		nS
t _{RISE}	A Port rise time	A-Port	HPD Channel Enabled		1.8		nS

Voltage Level Shifter – SCL, SDA Lines (x_A and x_B ports) VCCA = 1.8 V

	rago zovor omitor ocz., obri zmoc (x_rtana x_b porto) vocit = no v										
	PARAMETER	PINS	TEST CONDITIONS	MIN TYP MAX	UNIT						
	Dunnanation dalare	A to B	SCL/SDA Channels Enabled	300	nS						
t _{PHL}	Propagation delay	B to A	SCL/SDA Channels Enabled	350	nS						
	Propagation delay	A to B	SCL/SDA Channels Enabled	400	nS						
t _{PLH}		B to A	SCL/SDA Channels Enabled	420	nS						
	A Port fall time	A-Port	SCL/SDA Channels Enabled	210	nS						
t _{FALL}	B Port fall time	B-Port	SCL/SDA Channels Enabled	225	nS						
	A Port rise time	A-Port	SCL/SDA Channels Enabled	315	nS						
t _{RISE}	B Port fall time	B-Port	SCL/SDA Channels Enabled	415	nS						
F _(MAX)	Maximum switching frequency		SCL/SDA Channels Enabled	400	kHz						

Voltage Level Shifter - CEC Lines (x_A and x_B ports) VCCA = 1.8 V

	v		<u> </u>			
	PARAMETER	PINS	TEST CONDITIONS	MIN TYP	MAX U	UNIT
	Dropogotion doloy	A to B	CEC Channel Enabled	375		~C
t _{PHL}	Propagation delay	B to A	CEC Channel Enabled	366		nS
+	Describes delay	A to B	CEC Channel Enabled	13.8		μS
t _{PLH}	Propagation delay	B to A	CEC Channel Enabled	16.6		nS
	A Port fall time	A-Port	CEC Channel Enabled	210		0
t _{FALL}	B Port fall time	B-Port	CEC Channel Enabled	170		nS
	A Port rise time	A-Port	CEC Channel Enabled	315		nS
t _{RISE}	B Port rise time	B-Port	CEC Channel Enabled	28		μS

Voltage Level Shifter – HPD Lines (x_A and x_B ports) VCCA = 1.8 V

,	go =0.0. 0		(x_x and x_2 points) recort = 110 r				
	PARAMETER	PINS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PHL}	Propagation delay	B to A	HPD ChannelsEnabled		14.2		μS
t _{PLH}	Propagation delay	B to A	HPD Channel Enabled		9.2		μS
t _{FALL}	A Port fall time	A-Port	HPD Channel Enabled		1.5		nS
t _{RISE}	A Port rise time	A-Port	HPD Channel Enabled		1.5		nS

Submit Documentation Feedback

Copyright © 2011–2012, Texas Instruments Incorporated

Voltage Level Shifter – SCL, SDA Lines (x_A and x_B ports) VCCA = 2.5 V

	PARAMETER	PINS	TEST CONDITIONS	MIN TYP MAX	UNIT
	Dropogotion dolov	A to B	SCL/SDA Channels Enabled	300	nS
t _{PHL}	Propagation delay	B to A	SCL/SDA Channels Enabled	400	nS
	Propagation delay	A to B	SCL/SDA Channels Enabled	290	nS
t _{PLH}		B to A	SCL/SDA Channels Enabled	420	nS
	A Port fall time	A-Port	SCL/SDA Channels Enabled	170	nS
t _{FALL}	B Port fall time	B-Port	SCL/SDA Channels Enabled	225	nS
	A Port rise time	A-Port	SCL/SDA Channels Enabled	315	nS
t _{RISE}	B Port fall time	B-Port	SCL/SDA Channels Enabled	415	nS
F _(MAX)	Maximum switching frequency		SCL/SDA Channels Enabled	400	kHz

Voltage Level Shifter - CEC Lines (x A and x B ports) VCCA = 2.5 V

	PARAMETER	PINS	TEST CONDITIONS	MIN TYP M	AX UNIT
	Dranagation dalay	A to B	CEC Channel Enabled	375	nS
t _{PHL} Propagation delay	B to A	CEC Channel Enabled	305	lis	
	Dranagation dalay	A to B	CEC Channel Enabled	13.8	μS
t _{PLH}	Propagation delay	B to A	CEC Channel Enabled	16.6	nS
	A Port fall time	A-Port	CEC Channel Enabled	170	20
t _{FALL}	B Port fall time	B-Port	CEC Channel Enabled	170	nS
	A Port rise time	A-Port	CEC Channel Enabled	315	nS
t _{RISE}	B Port rise time	B-Port	CEC Channel Enabled	28	μS

Voltage Level Shifter – HPD Lines (x_A and x B ports) VCCA = 2.5 V

	J		(- <u>-</u>				
	PARAMETER	PINS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PHL}	Propagation delay	B to A	HPD Channel Enabled		14.2		μS
t _{PLH}	Propagation delay	B to A	HPD Channel Enabled		9.2		μS
t _{FALL}	A Port fall time	A-Port	HPD Channel Enabled		1.2		nS
t _{RISE}	A Port rise time	A-Port	HPD Channel Enabled		1.2		nS

Voltage Level Shifter - SCL, SDA Lines (x A and x B ports) VCCA = 3.3 V

		00 <u>–</u> , 0 <u>–</u> , 1		.0 1			
	PARAMETER	PINS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Duama nation dalas	A to B	SCL/SDA Channels Enabled		300		nS
t _{PHL}	Propagation delay	B to A	SCL/SDA Channels Enabled		400		nS
	Dranagation dalov	A to B	SCL/SDA Channels Enabled		260		nS
t _{PLH}	Propagation delay	B to A	SCL/SDA Channels Enabled		415		nS
	A Port fall time	A-Port	SCL/SDA Channels Enabled		160		nS
t _{FALL}	B Port fall time	B-Port	SCL/SDA Channels Enabled		225		nS
	A Port rise time	A-Port	SCL/SDA Channels Enabled		305		nS
t _{RISE}	B Port fall time	B-Port	SCL/SDA Channels Enabled		415		nS
F _(MAX)	Maximum switching frequency		SCL/SDA Channels Enabled	400			kHz

Copyright © 2011–2012, Texas Instruments Incorporated

Submit Documentation Feedback

Voltage Level Shifter – CEC Lines (x_A and x_B ports) VCCA = 3.3 V

	PARAMETER	PINS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Dropogation dolay	A to B	CEC Channel Enabled		375		nS
t _{PHL}	Propagation delay	B to A	CEC Channel Enabled		305		110
t Branconsticus deles		A to B	CEC Channel Enabled		13.8		μS
t _{PLH}	Propagation delay	B to A	CEC Channel Enabled		16.6		nS
	A Port fall time	A-Port	CEC Channel Enabled		160		0
t _{FALL}	B Port fall time	B-Port	CEC Channel Enabled		170		nS
	A Port rise time	A-Port	CEC Channel Enabled		305		nS
t _{RISE}	B Port rise time	B-Port	CEC Channel Enabled		28		μS

Voltage Level Shifter – HPD Lines (x_A and x_B ports) VCCA = 3.3 V

	PARAMETER	PINS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PHL}	Propagation delay	B to A	HPD Channel Enabled		14.2		μS
t _{PLH}	Propagation delay	B to A	HPD Channel Enabled		9.2		μS
t _{FALL}	A Port fall time	A-Port	HPD Channel Enabled		1.1		nS
t _{RISE}	A Port rise time	A-Port	HPD Channel Enabled		1.1		nS

Submit Documentation Feedback

APPLICATION INFORMATION

DDC/CEC LEVEL SHIFT Circuit Operation

The TPD12S016 enables DDC translation from VCCA (system side) voltage levels to 5V (HDMI cable side) voltage levels without degradation of system performance. The TPD12S016 contains 2 bidirectional open-drain buffers specifically designed to support up-translation/down-translation between the low voltage, VCCA side DDC-bus and the 5V DDC-bus. The port B I/Os are over-voltage tolerant to 5.5 V even when the device is unpowered. After power-up and with the LS_OE and CT_HPD pins HIGH, a LOW level on port A (below approximately $V_{ILC} = 0.08 \times VCCA$ V) turns the corresponding port B driver (either SDA or SCL) on and drives port B down to V_{OLB} V. When port A rises above approximately $0.10 \times VCCA$ V, the port B pull-down driver is turned off and the internal pull-up resistor pulls the pin HIGH. When port B falls first and goes below $0.3 \times 5 \times VOUT$, a CMOS hysteresis input buffer detects the falling edge, turns on the port A driver, and pulls port A down to approximately VOLA= $0.16 \times VCCA$ V. The port B pull-down is not enabled unless the port A voltage goes below V_{ILC} . If the port A low voltage goes below V_{ILC} , the port B pull-down driver is enabled until port A rises above ($V_{ILC} + \Delta V_{T-HYSTA}$), then port B, if not externally driven LOW, will continue to rise being pulled up by the internal pull-up resistor.

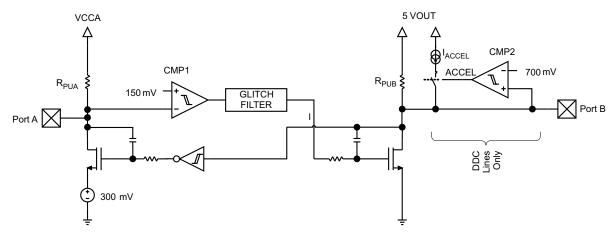


Figure 3. DDC/CEC Level Shifter Block Diagram

DDC/CEC Level Shifter Operational Notes for VCCA=1.8V

- The threshold of CMP1 is ~150mV ± the 40mV of total hysteresis.
- The comparator will trip for a falling waveform at ~130mV
- The comparator will trip for a rising waveform at ~170mV
- To be recognized as a zero, the level at Port A must first go below 130mV (V_{ILC} in spec) and then stay below 170mV (V_{ILA} in spec)
- To be recognized as a one, the level at A must first go above 170mV and then stay above 130mV
- \bullet V_{ILC} is set to 110mV in Electrical Characteristics Table to give some margin to the 130mV
- V_{ILA} is set to 140mV in the Electrical Characteristics Table to give some margin to the 170mV
- \bullet $\;\;$ V_{IHA} is set to 70% of VCCA to be consistent with standard CMOS levels

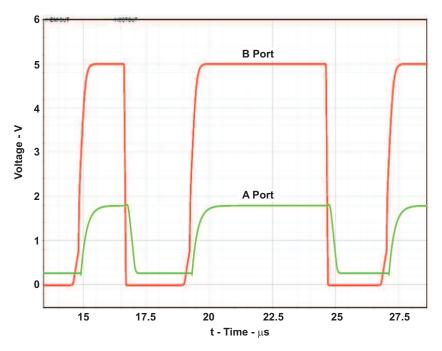


Figure 4. DDC Level Shifter Operation (B to A Direction)

Rise-Time Accelerators

The HDMI cable side of the DDC lines incorporates rise-time accelerators to support the high capacitive load on the HDMI cable side. The rise time accelerator boosts the cable side DDC signal independent of which side of the bus is releasing the signal.

Noise Considerations:

Ground offset between the TPD12S016 ground and the ground of devices on port A of the TPD12S016 must be avoided. The reason for this cautionary remark is that a CMOS/NMOS open-drain capable of sinking 3 mA of current at 0.4 V will have an output resistance of 133 Ω or less (R = E / I). Such a driver will share enough current with the port A output pull-down of the TPD12S016 to be seen as a LOW as long as the ground offset is zero. If the ground offset is greater than 0 V, then the driver resistance must be less. Since V_{ILC} can be as low as 90 mV at cold temperatures and the low end of the current distribution, the maximum ground offset should not exceed 50 mV. Bus repeaters that use an output offset are not interoperable with the port A of the TPD12S016 as their output LOW levels will not be recognized by the TPD12S016 as a LOW. If the TPD12S016 is placed in an application where the VIL of port A of the TPD12S016 does not go below its V_{ILC} it will pull port B LOW initially when port A input transitions LOW but the port B will return HIGH, so it will not reproduce the port A input on port B. Such applications should be avoided. Port B is interoperable with all I2C-bus slaves, masters and repeaters.

Resistor Pull-Up Value Selection

The system is designed to work properly with no external pull-up resistors on the DDC, CEC, and HPD lines.

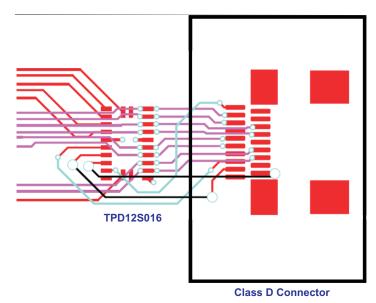


Figure 5. Board Layout for RKT Package

TYPICAL CHARACTERISTICS

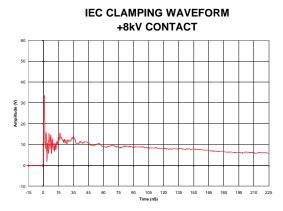


Figure 6.

Figure 8.

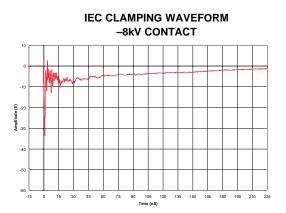


Figure 7.

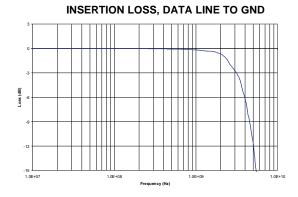


Figure 9.

CHANNEL-TO-CHANNEL CROSSTALK

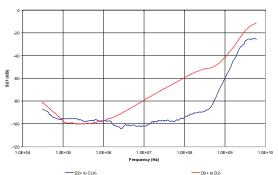


Figure 10.

LOAD SWITCH ILEAKAGE VS TEMPERATURE

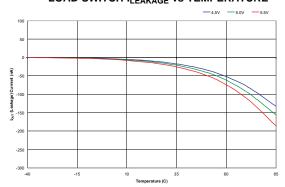


Figure 12.

SHORT-CIRCUIT RESPONSE TIME (POWERED-UP TO SHORT)

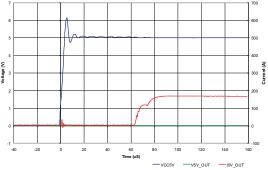


Figure 14.

SWITCH RESISTANCE VS TEMPERATURE

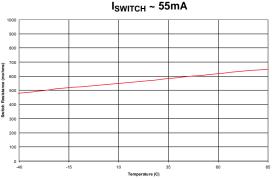


Figure 11.

TMDS LINE $I_{\rm IO}$ vs TEMPERATURE

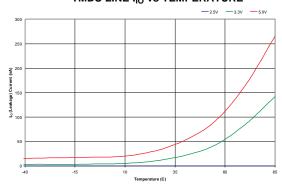


Figure 13.

CURRENT LIMIT RESPONSE TIME (SWITCH ENABLED TO SHORT)

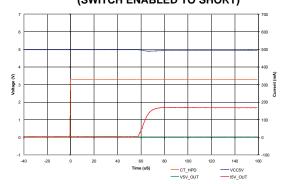
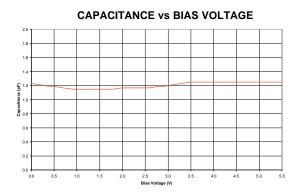



Figure 15.

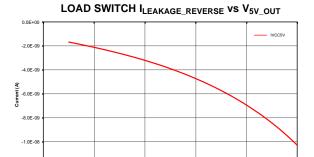


Figure 16.

Figure 17.

Eye Diagram Using EVM Without TPD12S016 for the TMDS Lines at 1080p, 340MHz Pixel Clock, 3.4Gbps

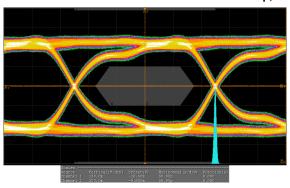


Figure 18.

Eye Diagram Using EVM with TPD12S016 for the TMDS Lines at 1080p, 340MHz Pixel Clock, 3.4Gbps

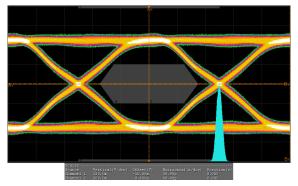


Figure 19.

REVISION HISTORY

Changes from Original (September 2011) to Revision A	Page
Added Eye Diagram Using EVM Without TPD12S016 for the TMDS Lines at 1080p, 340MHz Pixel (Clock, 3.4Gbps 17
Added Eye Diagram Using EVM with TPD12S016 for the TMDS Lines at 1080p, 340MHz Pixel Close	ck, 3.4Gbps 17
Changes from Revision A (October 2011) to Revision B	Page
Updated Circuit Schematic Diagram.	4
Added PW and RKT packages values for IO capacitance.	6
Added LOAD SWITCH I _{LEAKAGE_REVERSE} vs V _{5V_OUT} graph.	16
Changes from Revision B (June 2012) to Revision C	Page
Updated table formatting.	6

PACKAGE OPTION ADDENDUM

18-Jul-2012

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TPD12S016PWR	ACTIVE	TSSOP	PW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TPD12S016RKTR	ACTIVE	UQFN	RKT	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

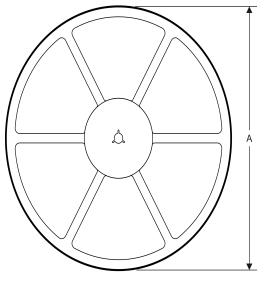
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

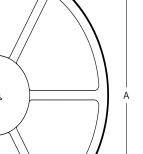
PACKAGE MATERIALS INFORMATION

 \oplus

B0

18-Jul-2012 www.ti.com

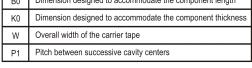

TAPE DIMENSIONS


- K0

Cavity

TAPE AND REEL INFORMATION

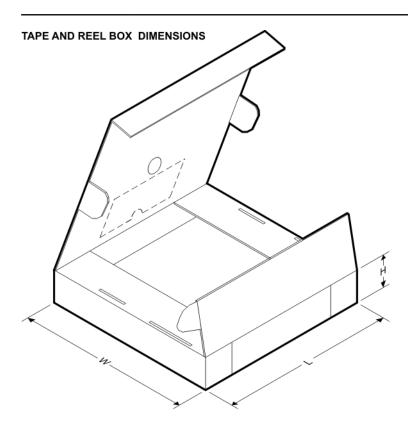
REEL DIMENSIONS



Dimension designed to accommodate the component width B0 Dimension designed to accommodate the component length

◆ A0 **→**

 \oplus \oplus

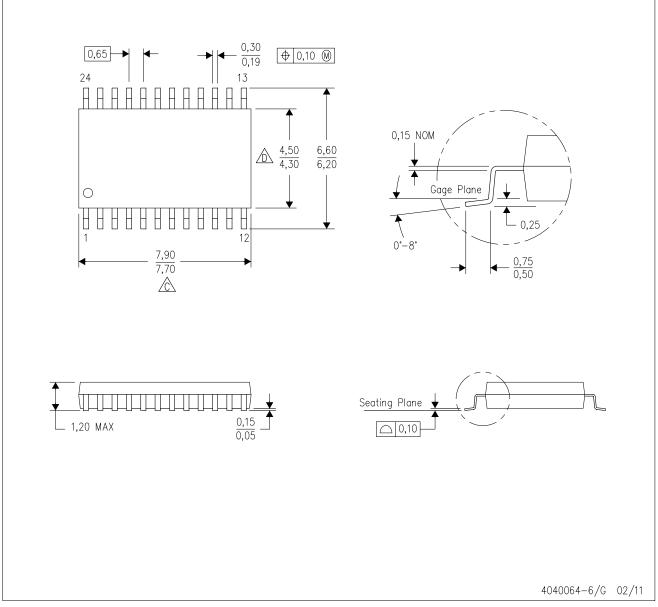


TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPD12S016PWR	TSSOP	PW	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1
TPD12S016RKTR	UQFN	RKT	24	3000	177.8	12.4	2.21	4.22	0.81	4.0	12.0	Q1

www.ti.com 18-Jul-2012

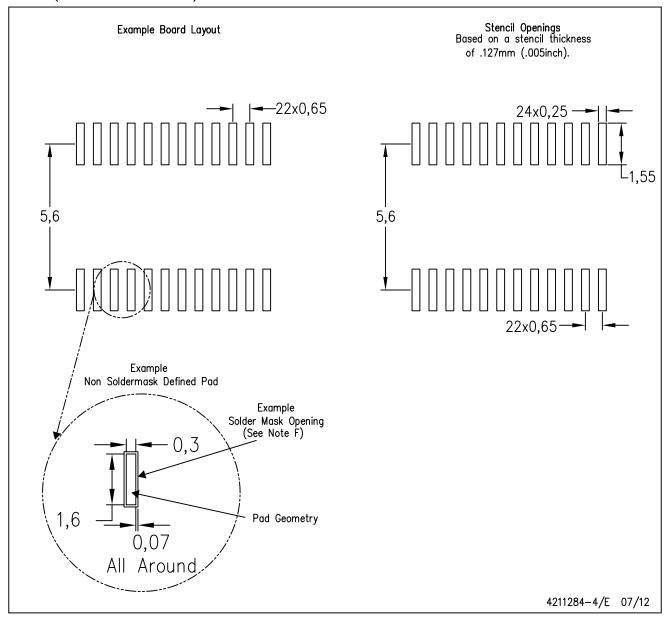


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPD12S016PWR	TSSOP	PW	24	2000	367.0	367.0	38.0
TPD12S016RKTR	UQFN	RKT	24	3000	202.0	201.0	28.0

PW (R-PDSO-G24)

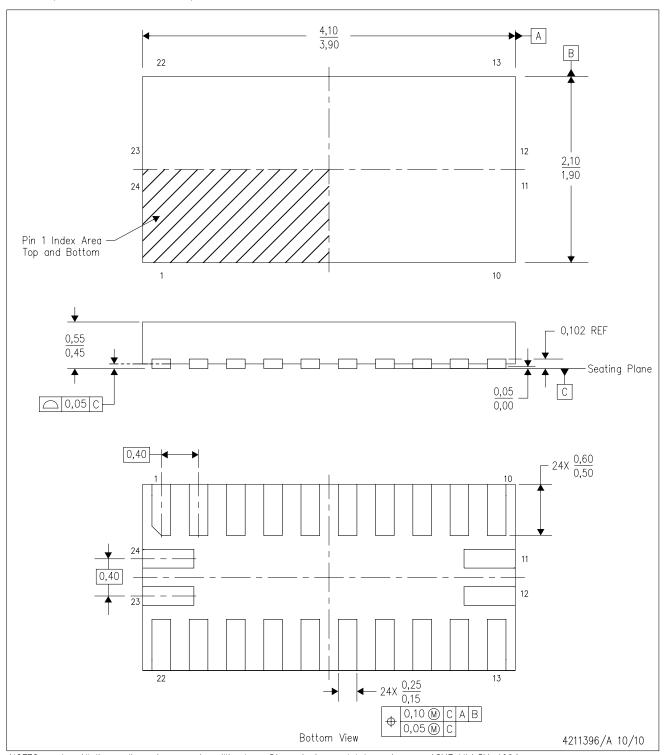
PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G24)

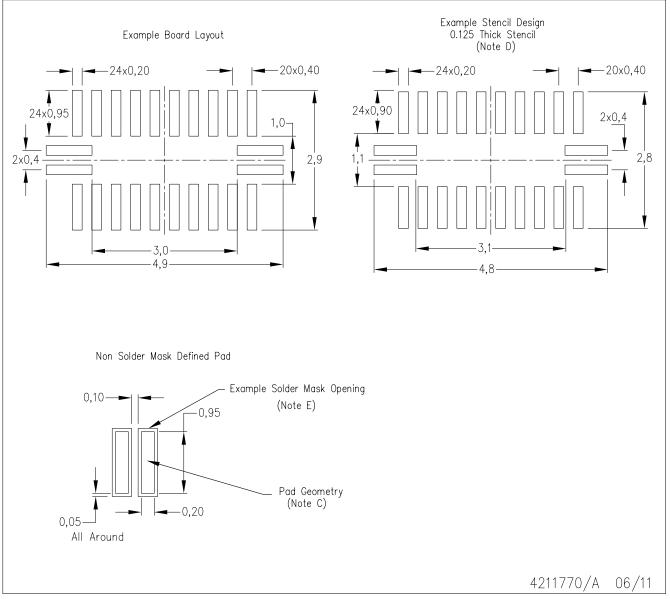
PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

RKT (R-PUQFN-N24)

PLASTIC QUAD FLATPACK NO-LEAD


NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.

RKT (R-PUQFN-N24)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- E. Customers should contact their board fabrication site for recommended solder mask tolerances between and around signal pads

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

roducts		Applications
udia	ununu ti oom/oudio	Automotive on

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio www.ti.com/communications **Amplifiers** amplifier.ti.com Communications and Telecom **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

www.ti-rfid.com

Pr